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Abstract

In this work, we aim to explore the transfer learning of
spatio-temporal feature extractors learned by the 13D net-
work [2] pre-trained on Kinetics [0] + ImageNet datasets
to other tasks. Specifically, we are interested in design-
ing a network for video object segmentation for the DAVIS
challenge. We propose an end-to-end learning framework
for segmenting video objects by converting 13D to a fully
convolutional architecture that fuses features across layers
to define a non linear local-to-global representation. We
also show how to bootstrap weakly annotated videos with
existing action classification datasets like Kinetics for pre-
training. We show that our results on the dataset for the
DAVIS 2016 challenge display promise for further invest-
ment in this system for other tasks.

1. Introduction

In the last few years, convolution networks are being
effectively adopted for per-pixel tasks like segmentation
[13, 1], tracking [4]. More recently, CNNs have also been
adopted for video tasks like action classification [2]. One
such network, I3D [2] introduces two-stream inflated 3D
convolutional network that is based on inflating 2D convo-
lutions. The filters and pooling layers of ConvNets are ex-
panded into 3D, making it possible to learn spatio-temporal
features from videos while leveraging successful ImageNet
architecture designs. I3D is initialized with inflated Im-
ageNet weights and further fine-tuned on Kinetics [6] to
achieve state-of-the-art results for action classification. In
this paper, we intend to leverage the spatio-temporal feature
extractors from I3D to other related but dissimilar tasks like
video object segmentation.

Conventional approaches for video object segmentation
employ 2D segmentation networks like [13, 11, 9] for per
frame segmentation mask predictions, that are subsequently
fused by incorporating optical flow information. Tradi-
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tional image classification networks are employed for seg-
mentation by modeling it as per-pixel classification prob-
lem. In CNNs, the deeper stages of the network contain
abstract and semantically meaningful information to make
mask predictions. The initial stages of the network con-
tain information on local features that are useful to extract
accurate boundaries of segmentation mask. Segmentation
networks [13, 11] are designed to enable reverse informa-
tion flow from last layers to initial layers of the network to
make predictions.

Video Object Segmentation for the 2016 DAVIS [10]
challenge, YouTube Objects [5] is a non-trivial task. DAVIS
dataset consists of 150 sequences with ground truth annota-
tions for each frame for 90 videos. The dataset captures
tougher examples of foreground segmentations with view-
point, illumination variances, shape deformations, partially
or fully occluded objects to be segmented. The challenge is
set for semi-supervised video segmentation where only the
first frame annotations are available for test sequence.

2. Related Work

One-Video Video Object Segmentation (OSVOS) [1] is
the baseline model for DAVIS 2016 challenge. OSVOS
is based on fully convolutional neural network architec-
ture that is able to transfer semantic context from Ima-
geNet pre-training. Subsequent works [8, 12] introduced
additional networks like mask propagation network, mask
re-identification network that are jointly trained alongside
CNN based RGB, Flow networks for segmentation. To im-
prove the performance on test sequences, [, 14] use one-
shot learning methods for fine-tuning the models. [7] pro-
poses a novel framework to generate future sequences for
fine-tuning the network to segment sparsely annotated ob-
jects in test data.

3. Method

The main motivation of our method has been to under-
stand transfer learning across videos for different tasks. The



effectiveness of transfer learning methods has been seen to
work across datasets and tasks for images. However, trans-
fer learning for videos is yet to be proven effective, as is
noted in [2]. To that motive, we intend to capitalize on the
learning done via I3D network with Kinetics pre-training
for action recognition and generalize the semantic informa-
tion learned to other tasks like foreground video object seg-
mentation and tracking. We started with visualizing the ac-
tivations of the frames of a video in Figure 1. It is easy to
observe that the features are activated at foreground objects
in the video (for example moving humans). This suggests
that the network extracts meaningful semantic information,
and sets up the motive to convert I3D to a fully convolu-
tional architecture that fuses features across layers to define
a non linear local-to-global representation that can be tuned
end-to-end.

Figure 1. Visualization of activations of second inception layer of
Kinetics pre-trained I3D on video (Parkour) from a new segmen-
tation specific dataset (DAVIS)

In the first subsection, we discuss the architecture of
fully convolutional I3D networks that has been shown effec-
tive for video object segmentation and describe the training
process. In the later part, we focus on learning the appear-
ance of single annotated frame from test sequence.

3.1. Fully Convolutional I3D Network

I3D or the Inflated 3D Convolutional Network has been
introduced by Carreira et al.[2] for video classification. It
has been trained inflating 2D convolutional layers on Ima-
geNet data to bootstrap 3D convolutional layers. Each layer
of data in the network has a size of ¢ x f x w x h where
c refers to the dimension of filters or channels, f refers to
the number of frames and w x h refers to the image size.
To ensure that the network can be trained for semantic seg-
mentation, the network predictions are to be modified to
output f X w X h segmentation mask. Drawing inspiration

from [13] that modified VGG network to predict segmenta-
tion masks by adding upsampling layers, we apply a sim-
ilar strategy for 3D convolutional networks like I3D. The
I3D architecture consists of five pooling layers followed by
fully connected layers and softmax to predict classification
output. I3D network has been modified as shown in Fig-
ure 2 by introducing deconvolution layers for upsampling
before each pooling step and discarding the last averaging
pooling layer. The new transposed convolution layers facil-
itate skip connections from different resolutions of outputs.
The skip connections capture local features obtained from
lower layers with global semantic context derived from the
last few layers. From each deconvolution layer, a segmen-
tation mask is obtained after different stages of upsampling.
These segmentation masks are of size f x w x h, which is
the same size as the image, and are fused together to give fi-
nal segmentation output. This end-to-end trainable network
outputs five segmentation masks, with the first four masks
taken directly from the upsampled layers and the last mask
being derived by fusing the first four segmentation masks.
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Figure 2. Network architecture of fully convolutional I3D network
with last averaging pooling layer for classification outputs being
removed and upsampling layers (red) added before every pooling
stage. Figure adapted from [2].

The network in Figure 3 is initialized with pre-trained
weights from Kinetics + Imagenet and it is fine tuned for
DAVIS dataset. The deconvolution layers are initialized
with 2D bilinear interpolation weights inflated along the
third dimension that corresponds to the number of frames.
The loss is computed to be per pixel-wise cross entropy for
binary classification. In order to counter the imbalance be-
tween two classes, class balanced cross entropy loss as de-
scribed in [1] is used. For each of the five segmentation
masks outputted by the network, class balanced cross en-
tropy loss is computed. We take a weighted average of the
losses that we obtain from each of these masks. The weights
are governed by the training epoch step. In the initial few
epochs, the first four masks are given higher weights and
this reduces linearly as the number of epochs progress.
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Figure 3. Visualization of fully convolutional I3D network architecture with upsmapling layers (blue) concatenated at four stages to produce
output segmentation mask. Input to the network is number of channels x number of frames x image size and output to the network is 1 x

number of frames x image size for segmentation masks

The deconvolution layers of the network are in gen-
eral initialized with bilinear or nearest neighbor weights.
The layers are expected to learn the upsampling weights
over training iterations. In our initial experiments, we no-
ticed that deconvolution layers in the initial epochs of train-
ing process produce checker-board like artifacts in the seg-
mented output mask. These artifacts could be resolved to
some extent by using overlapping deconvolutions. The de-
convolution layers are overlapping if the kernel size is a di-
visible by stride. This is equivalent to sub-pixel convolu-
tion, a technique which has recently had success in image
super-resolution [3].

3.2. Lucid Data Augmentation

During testing, only a single labeled training example
(first frame) with object annotation is given and the trained
model is expected to segment this object of interest over
the test sequences. This can be achieved by fine-tuning the
trained model separately for every video of test data. In
this framework, one shot learning method allows us to adapt
the network to a particular object instance given a single
annotated object.

The first step of our one-shot learning framework is to
create the 3D input data required to fine-tune the model for a
particular test example. The data is hallucinated by generat-

ing future training sequences using lucid data augmentation
technique proposed in [3]. We incorporate the first frame
segmentation by back-propagating on a set of K frames,
where the first frame is the given annotated frame of the
video and the K-1 frames are generated by cutting-out the
foreground object, in-painting the background, perturbing
both foreground and background, and finally recomposing
the scene.

3.2.1 Data Augmentation for training

Data augmentation techniques popular in the image domain,
such as geometric transformations in the form of random
crops, flips or rotations and photometric transformations fail
to generalize the learning process when applied indepen-
dently to each frame of 3D input. It is intuitive to reason
that this could be because in the case of a video, context
is important. Hence, for all the input frames that the net-
work observes, we are expected to maintain strict temporal
consistency. The geometric data augmentation technique is
applied jointly to all the frames in a particular input batch.
We also introduce a new style of applying random crops.
For the first frame of the video, we find a random 224x224
crop and accept this crop if more than 10% of the pixels are
foreground. This crop is applied on all subsequent frames



of the particular video.

3.2.2 Memory constraints

During training and fine-tuning, the inputs are randomly
cropped to 224x224 to train fully convolutional I3D net-
work described in Section 3.1. However, at test time, the
segmentation outputs are to be determined for the full res-
olution of test sequence, which is FHD size for DAVIS
dataset. Any particular test sequence of DAVIS dataset con-
sists frames between 35 to 100. This ends up creating mem-
ory constraints in computing forward and backward weights
on an input sequence on Nvidia GTX 1080 GPU given that
13D has a deep network architecture. To overcome this con-
straint, we divide the image into overlapping blocks of size
224x224 with a stride of 100 (configurable). The final seg-
mentation masks are obtained by averaging the outputs for
each of the overlapping blocks in every image.

4. Results

Dataset. We used DAVIS dataset to perform most of our
experiments since it is one of the largest densely annotated
datasets available with high quality, per pixel segmentation
annotations for high resolution ground truth videos. The
dataset has 150 sequences with ground truth annotations for
each frame for 90 videos. The remaining 60 test videos
have the segmentation for the object to be tracked in the
first frame. DAVIS dataset has a good distribution of chal-
lenging videos with deformable objects, illumination and
viewpoint changes etc. compared to YouTubeObjects [5]
which makes it a benchmark for video object segmentation.
Most videos contain one or two moving objects in the fore-
ground, and in this particular paper, we are focused on fore-
ground segmentation of moving objects. In the subsequent
iterations of this paper, we plan on extending the method to
instance segmentation of foreground objects.

Training. We initialize convolution layers of fully con-
volutional I3D network with pre-trained weights from Ki-
netics + ImageNet and deconvolution layers are inflated
with bilinear interpolation weights. The parent model is
then fine-tuned on DAVIS for 700 epochs. With the par-
ent network available, we proceed to the given task of seg-
menting a particular entity in a video, given the image and
the segmentation of the first frame. The parent model is
further trained (fine-tuned) for the particular image/ground-
truth pair for 200 epochs. The 3D data consisting of
image/ground-truth pairs is generated by lucid data aug-
mentation, and this model is then tested on the entire se-
quence, using the new weights. The model is optimized us-
ing stochastic gradient descent (SGD) with a learning rate
of 0.001, momentum 0.9 and input batch to every layer in
the network is normalized.

Evaluation. In the given task of video object segmen-
tation, the sparsely annotated mask of the first frame is ex-
pected to be propagated to the rest of the video. As justified
in [10], we use two evaluation metrics to compute the per-
formance of the model. The first metric is based on region
similarity which measures the number of misclassified pix-
els to evaluate the model. Jaccard Index J, computed as
intersection-over-union of image versus ground truth anno-
tation, is a commonly employed measure to evaluate per-
formance of segmentation algorithms. The next metric to
evaluate performance of segmentation algorithm is based
on contour accuracy F. The precision and recall values
for closed contours in the segmentation mask via bipartite
graph matching is computed. Our model was able to obtain
J-mean of 37.8 and F-mean of 40.7 on the validation set af-
ter training and fine-tuning for the particular image/ ground
truth pair. These results are comparable to performance of
baseline (OSVOS) and introduction of flow network would
remove false positives for segmentation mask predictions.

The qualitative evaluation of segmentation outputs of
DAVIS validation sequences is shown in Figure 4. It can
be seen that the method is robust to viewpoint, illumina-
tion variations, non rigid body deformations.The false pos-
itives being detected as foreground can be eliminated by
improving the fine-tuning pipeline which could mean im-
proving the quality of frames generated by lucid data aug-
mentation technique. Training a two stream network to
separately learn RGB and flow features would certainly
improve segmentation accuracy. Owing to resource con-
straints and GPU limitations, two stream architecture of
fully convolutional I3D network with full resolution 3D in-
puts could not experimented with and we plan on using a
shallower network for flow module in the subsequent iter-
ations of this paper. It can also be seen in Figure 4 that
the network is able to finely segment foreground objects
even for highly deformable objects like in parkour video.
The fourth row in Figure 4 shows the failure case where
the network is not able to finely segment the foreground
objects that are not captured in the first frame. Incorporat-
ing flow network would fuse additional context on apply-
ing similar segmentation masks to the entire object being
tracked and help resolve under-segmentation. Fine tuning
the network with better augmentation strategies to halluci-
nate subsequent frames would resolve over-segmentations
seen in the output.

The code and trained models for fully convolutional 13D
network can be accessed here.
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